429 research outputs found

    Reaction pathways involved in CH4 conversion on Pd/Al2O3 catalysts : TAP as a powerful tool for the elucidation of the effective role of the metal/support interface

    Get PDF
    Temporal Analysis of Products (TAP) investigation on Natural Gas-fueled Vehicle (NGV) catalysts provides information related to the nature of reaction steps involved over noble metals and at the metal-support interface. The determination of accurate kinetic parameters for methane adsorption from single pulse experiments and subsequent investigation of sequential surface reactions from alternative CH4/O2 pulse experiments is the first step toward the establishment of relevant structure/activity relationships which can highlight the importance of the metal/support interface on freshly-prepared and aged single palladium based catalysts

    Quantitative screening of an extended oxidative coupling of methane catalyst library

    Get PDF
    A comprehensive microkinetic model, including catalyst descriptors, that accounts for the homogeneous as well as heterogeneously catalyzed reaction steps in Oxidative Coupling of Methane (OCM) was used in the assessment of large kinetic datasets acquired on five different catalytic materials. The applicability of the model was extended from alkali magnesia catalysts represented by Li/MgO and Sn-Li/MgO and alkaline earth lanthana catalysts represented by Sr/La2O3 to rare earth-promoted alkaline earth calcium oxide catalysts, represented by LaSr/CaO, and to a Na-Mn-W/SiO2 catalyst. The model succeeded in adequately simulating the performance of all five investigated catalysts in terms of reactant conversion and product selectivities in the entire range of experimental conditions. It was found that the activity of Sr/La2O3, in terms of methane conversion, is approximately 2, 5, 30 and 33 times higher than over the La-Sr/CaO, Sn-Li/MgO, Na-Mn-W/SiO2 and Li/MgO catalysts, respectively, under identical operating conditions. This was attributed mainly to the high stability of adsorbed hydroxyls, the high stability of adsorbed oxygen and the high concentration of active sites of Sr/La2O3. The selectivity towards C2 products was found to depend on the methyl radical sticking coefficient and the stability of the adsorbed oxygen and was the highest on the Na-W-Mn/SiO2 catalyst, that is 75% at about 1% methane conversion and 1023 K, 190 kPa and inlet molar CH4/O2 ratio of 4

    Detection of a highly prevalent and potentially virulent strain of Pseudomonas aeruginosa from nosocomial infections in a medical center

    Get PDF
    BACKGROUND: We correlated genotypes, virulence factors and antimicrobial susceptibility patterns of nosocomially identified Pseudomonas aeruginosa isolates from clinical specimens to those of environmental isolates encountered in the same units of a medical center. Antibiotic susceptibility testing, RAPD analysis and detection of enzymatic activities of extracellular virulence factors, were done on these isolates. RESULTS: Data showed that most of the clinical and environmental isolates were susceptible to tested antimicrobial agents. RAPD analysis determined the presence of 31 genotypes, with genotype 1 detected in 42% of the clinical isolates and 43% of the environmental isolates. Enzymatic activity testing showed that genotype 1 produced all virulence factors tested for. CONCLUSION: In conclusion, our data demonstrated the predominant prevalence of a potentially virulent P. aeruginosa genotype, circulating in a number of units of the medical center and emphasize the need to reinforce infection control measures

    Proton tracking in a high-granularity Digital Tracking Calorimeter for proton CT purposes

    Get PDF
    Radiation therapy with protons as of today utilizes information from x-ray CT in order to estimate the proton stopping power of the traversed tissue in a patient. The conversion from x-ray attenuation to proton stopping power in tissue introduces range uncertainties of the order of 2-3% of the range, uncertainties that are contributing to an increase of the necessary planning margins added to the target volume in a patient. Imaging methods and modalities, such as Dual Energy CT and proton CT, have come into consideration in the pursuit of obtaining an as good as possible estimate of the proton stopping power. In this study, a Digital Tracking Calorimeter is benchmarked for proof-of-concept for proton CT purposes. The Digital Tracking Calorimeteris applied for reconstruction of the tracks and energies of individual high energy protons. The presented prototype forms the basis for a proton CT system using a single technology for tracking and calorimetry. This advantage simplifies the setup and reduces the cost of a proton CT system assembly, and it is a unique feature of the Digital Tracking Calorimeter. Data from the AGORFIRM beamline at KVI-CART in Groningen in the Netherlands and Monte Carlo simulation results are used to in order to develop a tracking algorithm for the estimation of the residual ranges of a high number of concurrent proton tracks. The range of the individual protons can at present be estimated with a resolution of 4%. The readout system for this prototype is able to handle an effective proton frequency of 1 MHz by using 500 concurrent proton tracks in each readout frame, which is at the high end range of present similar prototypes. A future further optimized prototype will enable a high-speed and more accurate determination of the ranges of individual protons in a therapeutic beam.Comment: 21 pages, 8 figure

    Microstructural influence of the thermal behavior of arc deposited TiAlN coatings with high aluminum content

    Get PDF
    The influence of the microstructure on the thermal behavior of cathodic arc deposited TiAlN coatings was studied as a function of isothermal annealing. Two compositionally similar but structurally different coatings were compared, a Ti0\ub734Al0\ub766N0.96 coating with a fine-grain structure consisting of a mixture of cubic (c) and hexagonal (h) phases, and a Ti0\ub740Al0\ub760N0.94 coating with a coarse-grain structure of cubic phase. By in situ wide-angle synchrotron x-ray scattering, spinodal decomposition was confirmed in both coatings. The increased amount of internal interfaces lowered the decomposition temperature by 50 \ub0C for the dual-phase coating. During the subsequent isothermal anneal at 1000 \ub0C, a transformation from c-AlN to h-AlN took place in both coatings. After 50 min of isothermal annealing, atom probe tomography detected small amounts of Al (∼2 at.%) in the c-TiN rich domains and small amounts of Ti (∼1 at.%) in the h-AlN rich domains of the coarse-grained single-phase Ti0\ub740Al0\ub760N0.94 coating. Similarly, at the same conditions, the fine-grained dual-phase Ti0\ub734Al0\ub766N0.96 coating exhibits a higher Al content (∼5 at.%) in the c-TiN rich domains and higher Ti content (∼15 at.%) in the h-AlN rich domains. The study shows that the thermal stability of TiAlN is affected by the microstructure and that it can be used to tune the reaction pathway of decomposition favorably

    Interfacial Tensions near Critical Endpoints: Experimental Checks of EdGF Theory

    Full text link
    Predictions of the extended de Gennes-Fisher local-functional theory for the universal scaling functions of interfacial tensions near critical endpoints are compared with experimental data. Various observations of the binary mixture isobutyric acid ++ water are correlated to facilitate an analysis of the experiments of Nagarajan, Webb and Widom who observed the vapor-liquid interfacial tension as a function of {\it both} temperature and density. Antonow's rule is confirmed and, with the aid of previously studied {\it universal amplitude ratios}, the crucial analytic ``background'' contribution to the surface tension near the endpoint is estimated. The residual singular behavior thus uncovered is consistent with the theoretical scaling predictions and confirms the expected lack of symmetry in (TTc)(T-T_c). A searching test of theory, however, demands more precise and extensive experiments; furthermore, the analysis highlights, a previously noted but surprising, three-fold discrepancy in the magnitude of the surface tension of isobutyric acid ++ water relative to other systems.Comment: 6 figure

    An emerging role of mTOR in lipid biosynthesis

    Get PDF
    Lipid biosynthesis is essential for the maintenance of cellular homeostasis. The lipids produced by cells (glycerolipids, fatty acids, phospholipids, cholesterol, and sphingolipids) are used as an energy source/reserve, as building blocks for membrane biosynthesis, as precursor molecules for the synthesis of various cellular products, and as signaling molecules. Defects in lipid synthesis or processing contribute to the development of many diseases, including obesity, insulin resistance, type 2 diabetes, non-alcoholic fatty liver disease, and cancer. Studies published over the last few years have shown that the target of rapamycin (TOR), a conserved serine/threonine kinase with an important role in regulating cell growth, controls lipid biosynthesis through various mechanisms. Here, we review these findings and briefly discuss their potential relevance for human health and disease
    corecore